У кого появилось впервые сердце

сердце — Биологический энциклопедический словарь

У кого появилось впервые сердце

(соr), центральный орган кровеносной системы животных, сокращениями к-рого осуществляется циркуляция крови или гемолимфы по сосудам. У большинства животных последоват. сокращение отделов С.

и строение его клапанов обеспечивают односторонность тока крови. В процессе эволюции С.

дифференцируется как участок кровеносного сосуда и впервые появляется у кольчатых червей в виде пульсирующего спинного сосуда или его части.

У большинства моллюсков С. хорошо развито, состоит из 1—4 (обычно 2) предсердий и желудочка. У членистоногих С.— часть спинного сосуда, разделено на камеры, боковые стенки к-рых пронизаны отверстиями (остиями), через них в С. засасывается кровь. У ланцетника роль С. выполняют часть брюшного сосуда и основания сосудов, несущих кровь к жабрам. У позвоночных С.

развивается в эмбриогенезе из первичного парного зачатка сосуда, расположенного под глоткой. Из его стенок образуется эндокард, а из прилегающего висцерального листка брюшины — миокард и эпикард. Участок целома, окружающий зачаток С, образует перикард. С. разделяется на отделы, к-рые только у латимерии расположены по прямой линии, у остальных позвоночных зачаток С. изгибается.

У круглоротых и рыб (кроме двоякодышащих) С.

состоит из тонкостенных резервуаров, собирающих венозную кровь (венозный синус и предсердие), и из мускулистого желудочка, а у низших рыб — включает также артериальный конус с клапанами; у двоякодышащих рыб с развитием лёгочного дыхания образуются неполные перегородки, отделяющие в предсердии и желудочке отделы, заполненные венозной и артериальной кровью.

У земноводных в С. различают венозный синус, полностью (бесхвостые) или неполностью разделённые предсердия и единый желудочек.

У пресмыкающихся венозный синус постепенно включается в стенку предсердий, к-рые всегда разделены перегородкой, начинается разделение желудочка, но только у крокодилов имеется перегородка, полностью отделяющая левый и правый желудочки. У птиц и млекопитающих С. четырёхкамерное.

Полное разделение токов крови в правой и левой половинах С. стало возможным в результате прогрессивного развития лёгких, способных пропустить в единицу времени такое же кол-во крови, какое проходит через большой круг кровообращения.

Лишь у плода млекопитающих в перегородке между предсердиями имеется овальное отверстие (боталлов проток), через к-рое большая часть крови из правого предсердия поступает в левое, минуя лёгкие. После рождения включается малый круг кровообращения и боталлов проток перекрывается.

Предсердия соединены с желудочками предсердно-желудочковыми (атриовентрикулярными) отверстиями, к-рые при сокращении желудочков закрываются створчатыми клапанами. На внутр. поверхности желудочков находятся т. н. сосочковые мышцы, от них к свободным краям створок клапанов тянутся сухожильные тяжи, препятствующие вывёртыванию створок клапанов в сторону предсердий.

С. человека расположено в грудной полости асимметрично: 1/3 его лежит справа от срединной плоскости тела, 2/3 — слева. Задненижняя поверхность С. прилежит к диафрагме. Со всех сторон оно окружено лёгкими, за исключением части передней поверхности, прилегающей к грудной стенке. Масса С. взрослого человека в среднем ок. 250 г у женщин и ок. 330 г у мужчин, дл.

10—15 см, в поперечнике 8—11 см, переднезадний размер 6—8,5 см. Венозная кровь из большого круга кровообращения по ниж. и верх, полым венам поступает в правое предсердие, а артериальная — из лёгких в левое предсердие по 4 лёгочным венам.

При сокращениях толстостенного левого желудочка кровь нагнетается через аорту в большой круг кровообращения, а при сокращениях правого желудочка — через лёгочный ствол и лёгочные артерии в малый (лёгочный) круг. Сокращения сердечной мышцы вызываются периодически появляющимися в ней электрич. импульсами возбуждений, к-рые возникают в клетках т. н. проводящей системы С. Они расположены гл.

обр. в устьях полых вен, а также в синусно-предсердном узле, являющемся водителем ритма С.— пейсмекером.

Далее возбуждение распространяется по предсердиям, достигая предсердно-желудочкового узла, клетки к-рого обладают способностью несколько задерживать проведение возбуждения и оно переходит на пучок Гиса, волокна Пуркине и сократит, миокард желудочков уже после окончания цикла сокращения в предсердиях. Способность автоматически, т. е.

без участия ЦНС, генерировать распространяющиеся импульсы присуща не только синусно-предсердному узлу, но и др. элементам проводящей системы С. Энергия сокращения зависит от степени растяжения мышечных волокон (см. Старлинга закон). Период сокращения и расслабления С. составляет сердечный цикл, состоящий из систолы (последоват. сокращение предсердий и желудочков), диастолы (последоват.

их расслабление) и паузы (период одноврем. расслабления желудочков и предсердий). Во время паузы кровь из полых вен попадает в правое предсердие, а из лёгочных вен — в левое; часть её поступает и в желудочки через открытые створчатые клапаны. Продолжительность сердечного цикла ок. 0,8 с. Кол-во крови, выталкиваемое С. за 1 мин, наз. минутным объёмом сердца. Биологически активные вещества, поступающие в С. с током крови, осуществляют его гуморальную регуляцию. Описан новый тип регуляции С. посредством внутрисердечных периферич. рефлексов.

См. кровообращение.

↑ Сердце позвоночных (схема): А — рыбы; Б — двоякодышащие рыбы; В — хвостатые земноводные; Г — бесхвостые земноводные; Д — пресмыкающиеся; Е — птицы и млекопитающие.

1—4— артериальные дуги; 5 — кювьеров проток; 6 — венозный синус; 7 — предсердие; 8 — желудочек; 9 — артериальный конус; 10 — правое предсердие; 11 — правый желудочек; 12 — задняя полая вена; 13 — лёгочная вена; 14 — лёгочный ствол; 15 — аорта; 16 — нижняя полая вена; 17 — ушки сердца (у млекопитающих). Стрелками показано направление тока крови.

↑ Вскрытое сердце человека: 1 — левое предсердие; 2 — лёгочные вены (показаны лишь две); 3 — левый предсердно-желудочковый клапан (двустворчатый); 4 — левый желудочек; 5 — межжелудочковая перегородка; 6 — правый желудочек; 7 — нижняя полая вена; 8 — правый предсердно-желудочковый клапан (трёхстворчатый); 9 — правое предсердие; 10 — синусно-предсердный узел; 11 — верхняя полая вена; 12 — предсердно-желудочковый узел.

Источник: Биологический энциклопедический словарь на Gufo.me

Источник: https://gufo.me/dict/biology/%D1%81%D0%B5%D1%80%D0%B4%D1%86%D0%B5

Расшифрован молекулярный механизм превращения трехкамерного сердца в четырехкамерное • Новости науки

У кого появилось впервые сердце

Появление четырехкамерного сердца у птиц и млекопитающих было важнейшим эволюционным событием, благодаря которому эти животные смогли стать теплокровными.

Детальное изучение развития сердца у эмбрионов ящерицы и черепахи и сравнение его с имеющимися данными по амфибиям, птицам и млекопитающим показало, что ключевую роль в превращении трехкамерного сердца в четырехкамерное сыграли изменения в работе регуляторного гена Tbx5, который функционирует в изначально едином зачатке желудочка. Если Tbx5 эспрессируется (работает) равномерно по всему зачатку, сердце получается трехкамерным, если только с левой стороны — четырехкамерным.

Выход позвоночных на сушу был связан с развитием легочного дыхания, что потребовало радикальной перестройки кровеносной системы. У дышащих жабрами рыб один круг кровообращения, а сердце, соответственно, двухкамерное (состоит из одного предсердия и одного желудочка).

У наземных позвоночных — трех- или четырехкамерное сердце и два круга кровообращения. Один из них (малый) прогоняет кровь через легкие, где она насыщается кислородом; затем кровь возвращается к сердцу и попадает в левое предсердие.

Большой круг направляет обогащенную кислородом (артериальную) кровь ко всем прочим органам, где она отдает кислород и по венам возвращается к сердцу, попадая в правое предсердие.

У животных с трехкамерным сердцем кровь из обоих предсердий попадает в единый желудочек, откуда она затем направляется и к легким, и ко всем прочим органам. При этом артериальная кровь в той или иной степени смешивается с венозной.

У животных с четырехкамерным сердцем в ходе эмбрионального развития изначально единый желудочек подразделяется перегородкой на левую и правую половины.

В результате два круга кровообращения оказываются полностью разделены: венозная кровь попадает только в правый желудочек и идет оттуда к легким, артериальная — только в левый желудочек и идет оттуда ко всем прочим органам.

Формирование четырехкамерного сердца и полное разделение кругов кровообращения было необходимой предпосылкой развития теплокровности у млекопитающих и птиц.

Ткани теплокровных животных потребляют очень много кислорода, поэтому им необходима «чистая» артериальная кровь, максимально насыщенная кислородом, а не смешанная артериально-венозная, которой довольствуются холоднокровные позвоночные с трехкамерным сердцем (см.: Филогенез кровеносной системы хордовых).

Трехкамерное сердце характерно для амфибий и большинства рептилий, хотя у последних намечается частичное разделение желудочка на две части (развивается неполная внутрижелудочковая перегородка).

Настоящее четырехкамерное сердце развилось независимо в трех эволюционных линиях: у крокодилов, птиц и млекопитающих. Это считается одним из ярких примеров конвергентной (или параллельной) эволюции (см.

: Ароморфозы и параллельная эволюция; Параллелизмы и гомологическая изменчивость).

Большая группа исследователей из США, Канады и Японии, опубликовавшая свои результаты в последнем номере журнала Nature, задалась целью выяснить молекулярно-генетические основы этого важнейшего ароморфоза.

Авторы детально изучили развитие сердца у эмбрионов двух рептилий — красноухой черепахи Trachemys scripta и ящерицы анолиса (Anolis carolinensis).

Рептилии (кроме крокодилов) представляют особый интерес для решения поставленной задачи, поскольку строение их сердца по многим признакам — промежуточное между типичным трехкамерным (таким, как у амфибий) и настоящим четырехкамерным, как у крокодилов, птиц и зверей.

Между тем, по утверждению авторов статьи, вот уже 100 лет никто всерьез не изучал эмбриональное развитие сердца рептилий.

Исследования, выполненные на других позвоночных, до сих пор не дали однозначного ответа на вопрос о том, какие генетические изменения обусловили формирование четырехкамерного сердца в ходе эволюции.

Было, однако, замечено, что регуляторный ген Tbx5, кодирующий белок — регулятор транскрипции (см. транскрипционные факторы), по-разному работает (экспрессируется) в развивающемся сердце у амфибий и теплокровных.

У первых он равномерно экспрессируется по всему будущему желудочку, у вторых его экспрессия максимальна в левой части зачатка, из которой в дальнейшем формируется левый желудочек, и минимальна справа.

Обнаружилось также, что уменьшение активности Tbx5 ведет к дефектам в развитии перегородки между желудочками. Эти факты позволили авторам предположить, что изменения в активности гена Tbx5 могли сыграть какую-то роль в эволюции четырехкамерного сердца.

В ходе развития сердца ящерицы в желудочке развивается мышечный валик, частично отделяющий выходное отверстие желудочка от его основной полости.

Этот валик некоторыми авторами трактовался как структура, гомологичная межжелудочной перегородке позвоночных с четырехкамерным сердцем. Авторы обсуждаемой статьи на основе изучения роста валика и его тонкой структуры отвергают эту трактовку.

Они обращают внимание на то, что такой же валик ненадолго появляется и в ходе развития сердца куриного эмбриона — наряду с настоящей перегородкой.

Полученные авторами данные свидетельствуют о том, что у ящерицы никаких структур, гомологичных настоящей межжелудочной перегородке, по-видимому, не формируется. У черепахи, напротив, формируется неполная перегородка (наряду с менее развитым мышечным валиком). Формирование этой перегородки у черепахи начинается намного позже, чем у цыпленка.

Тем не менее получается, что у ящерицы сердце более «примитивное», чем у черепахи. Сердце черепахи занимает промежуточное положение между типичным трехкамерным (таким как у амфибий и ящериц) и четырехкамерным, таким как у крокодилов и теплокровных. Это противоречит общепринятым представлениям об эволюции и классификации рептилий.

На основе анатомических признаков черепах традиционно считали самой примитивной (базальной) группой среди современных рептилий. Однако сравнительный анализ ДНК, проведенный рядом исследователей, раз за разом упрямо указывал на близость черепах к архозаврам (группе, включающей крокодилов, динозавров и птиц) и на более базальное положение чешуйчатых (ящериц и змей).

Строение сердца подтверждает эту новую эволюционную схему (см. рисунок).

Авторы изучили экспрессию нескольких регуляторных генов в развивающемся сердце черепахи и ящерицы, в том числе гена Tbx5.

У птиц и млекопитающих уже на очень ранних стадиях эмбриогенеза в зачатке желудочков образуется резкий градиент экспрессии этого гена (экспрессия быстро убывает слева направо).

Оказалось, что у ящерицы и черепахи на ранних стадиях ген Tbx5 экспрессируется так же, как у лягушки, то есть равномерно по всему будущему желудочку.

У ящерицы такая ситуация сохраняется до конца эмбриогенеза, а у черепахи на поздних стадиях формируется градиент экспрессии — по существу, такой же, как у цыпленка, только выраженный слабее. Иными словами, в правой части желудочка активность гена постепенно снижается, а в левой остается высокой. Таким образом, по характеру экспрессии гена Tbx5 черепаха тоже занимает промежуточное положение между ящерицей и курицей.

Известно, что белок, кодируемый геном Tbx5, является регуляторным — он регулирует активность многих других генов.

На основе полученных данных естественно было предположить, что развитие желудочков и закладка межжелудочковой перегородки идут под управлением гена Tbx5.

Ранее уже было показано, что уменьшение активности Tbx5 у мышиных эмбрионов ведет к дефектам в развитии желудочков. Этого, однако, было недостаточно, чтобы считать доказанной «руководящую» роль Tbx5 в формировании четырехкамерного сердца.

Для получения более веских доказательств авторы использовали несколько линий генетически модифицированных мышей, у которых в ходе эмбрионального развития ген Tbx5 можно было отключать в той или иной части сердечного зачатка по желанию экспериментатора.

Оказалось, что если выключить ген во всем зачатке желудочков, то зачаток даже не начинает подразделяться на две половинки: из него развивается единый желудочек без всяких следов межжелудочной перегородки.

Характерные морфологические признаки, по которым можно отличить правый желудочек от левого независимо от наличия перегородки, тоже не формируются.

Иными словами, получаются мышиные зародыши с трехкамерным сердцем! Такие зародыши погибают на 12-й день эмбрионального развития.

Следующий эксперимент состоял в том, что ген Tbx5 отключили только в правой части зачатка желудочков. Тем самым градиент концентрации регуляторного белка, кодируемого этим геном, был резко смещен влево.

В принципе, можно было ожидать, что в такой ситуации межжелудочная перегородка начнет формироваться левее, чем положено. Но этого не произошло: перегородка не начала формироваться вовсе, зато наметилось подразделение зачатка на левую и правую части по другим морфологическим признакам.

Это значит, что градиент экспрессии Tbx5 — не единственный фактор, управляющий развитием четырехкамерного сердца.

В другом эксперименте авторам удалось добиться, чтобы ген Tbx5 равномерно экспрессировался во всем зачатке желудочков мышиного эмбриона — примерно так же, как у лягушки или ящерицы. Это опять-таки привело к развитию мышиных эмбрионов с трехкамерным сердцем.

Полученные результаты показывают, что изменения в работе регуляторного гена Tbx5 действительно могли сыграть важную роль в эволюции четырехкамерного сердца, причем эти изменения произошли параллельно и независимо у млекопитающих и архозавров (крокодилов и птиц). Таким образом, исследование еще раз подтвердило, что в эволюции животных ключевую роль играют изменения в активности генов — регуляторов индивидуального развития.

Конечно, было бы еще интереснее сконструировать таких генно-модифицированных ящериц или черепах, у которых Tbx5 экспрессировался бы как у мышей и кур, то есть в левой части желудочка сильно, а в правой — слабо, и посмотреть, не станет ли у них от этого сердце больше похожим на четырехкамерное. Но это пока технически неосуществимо: генная инженерия рептилий еще не продвинулась так далеко.

Источник: Koshiba-Takeuchi et al. Reptilian heart development and the molecular basis of cardiac chamber evolution // Nature. 2009. V. 461. P. 95–98.

Александр Марков

Источник: https://elementy.ru/novosti_nauki/431141/Rasshifrovan_molekulyarnyy_mekhanizm_prevrashcheniya_trekhkamernogo_serdtsa_v_chetyrekhkamernoe

Эволюция кровеносной системы

У кого появилось впервые сердце

В процессе эволюции кровеносная система появляется в связи с развитием дыхательной системы, так как одна из ее главных функций – транспорт газов от органов дыхания и к ним.

Направления эволюции кровеносной системы

– Появление и дифференцировка сердца (от двух к четырех камерному).

– Появление малого (легочного) круга кровообращения и разделение двух кругов.

– Уменьшение числа и преобразование (дифференцировка) жаберных артерий (артериальных дуг).

Кровеносная система всех хордовых замкнутая, в которой пульсирующий орган – сосуд или сердце – расположен на брюшной стороне.

Кровь циркулирует по системе кровеносных сосудов, стенки которых имеют гладкие мускульные волокна и тонкую внутреннюю эндотелиальную оболочку через такую систему биологических мембран обеспечивается активный обмен веществами между кровью и тканевой жидкостью.

Замыкание кровеносной системы и появление эндотелиальной выстилки стенок кровеносных сосудов, привело к появлению в организме трех сред: внутриклеточной, внутритканевой с межклеточной жидкостью – лимфой, и кровеносного русла с кровью.

Такая организация внутренней среды позвоночных обеспечивает ее устойчивость, которая необходима для протекания биохимических процессов в организме, быстро меняющем как места пребывания (т.е. внешние условия), так и свое внутреннее состояние. С замыканием кровеносной системы связано появление особой лимфатической системы, включающей разного диаметра лимфатические сосуды и полости.

У ланцетника один круг кровообращения. Сердца нет. Венозная кровь по двум кювьеровым протокам собирается в венозный синус. От венозного синуса начинается брюшная аорта, которая расположена под глоткой и распадается на 100-150 пар приносящих жаберных артерий.

Движение крови осуществляется за счет ритмичного сокращения стенок брюшной аорты и оснований приносящих жаберных артерий. Жаберные артерии не распадаются на капилляры.

После газообмена в жабрах артериальная кровь сливается в выносящие жаберные артерии, а они – в два корня аорты, от которых к головному отделу ланцетника артериальную кровь несут сонные артерии, а к хвостовому отделу – спинная аорта, отдавая по своему ходу более мелкие сосуды к внутренним органам и стенкам тела.

Венозная кровь собирается в парные передние и задние кардинальные вены, которые сливаются в кювьеровы протоки, впадающие в венозный синус. Венозная кровь от стенок кишечника собирается в подкишечную вену, которая в печеночном выросте распадается на сеть капилляров, образуя воротную систему печени.

Капилляры печеночного выроста вновь сливаются в короткую печеночную вену, впадающую в венозный синус. Кровь ланцетника не содержит форменных элементов, ни дыхательных пигментов и поэтому бесцветна. Малые размеры животного и тонкая кожа позволяют насыщать кровь кислородом не только в жаберных артериях, но и во всех поверхностных сосудах тела. В процессе эволюции у позвоночных животных в месте впадения вен в брюшную аорту развивается сердце (рис.2).

Рис. 2. Схема строения сердца и артериальных дуг в разных классах позвоночных: Арыбы; Бличинки земноводных; Вхвостатые земноводные после метаморфоза; Гпресмыкающиеся; Дптицы; Емлекопитающие. Венозная кровь показана черным цветом.

Парные структуры обозначены соответственно п (правая) и л (левая).

I–сонные артерии; 2–жаберные капилляры; 3–желудочки сердца; 4–предсердия; 5–корни спинной аорты; 6–венозный синус; 7–спинная аорта; 8–легочные артерии; 9–боталлов проток; 10–легочные капилляры; 11–вены тела; 12–легочные вены.

III, IV, V, VI–артериальные дуги (нумерация с учетом передних пар, редуцировавшихся в ходе эволюции). На рис. Ав веночный синус впадают кювьеровы протоки, возникающие при слиянии кардинальных вен. На рис. Вмежду III и IV пунктиром показаны сонные протоки, рудименты корней спинной аорты.

У оболочников сердце в виде короткой трубки, от которой один сосуд идет к глотке, а один – к внутренним органам и мантии. Кровь изливается в лакуны. Кровообращение заменено маятникообразным движением крови.

Кровеносная система круглоротых и рыб во многом организована по той же схеме, что и у ланцетника, только сложнее. У рыб и круглоротых один круг кровообращения. Сердце состоит из двух камер (предсердия и желудочка), в сердце только венозная кровь.

К предсердию примыкает венозный синус, дистальный отдел желудочка (область перехода его в аорту) образует артериальный конус, который переходит в брюшную аорту.

Артериальный конус, свойственный желудочку хрящевых рыб, имеется только у низших костных рыб (осетровые, кистеперые, двоякодышащие), у более высокоорганизованных вместо него образуется луковица аорты, которая является расширением начального отдела брюшной аорты и к желудочку не относится.

При наличии сердца, которое регулирует свою работу самостоятельно, движение крови по артериям непосредственно определяется силой и частотой сердечных сокращений. У большинства видов дыхательный пигмент (гемоглобин) находится в эритроцитах.

У некоторых рыб, обитающих в богатых кислородом водах Антарктики, гемоглобин отсутствует, и кислород растворяется непосредственно в плазме крови. Во время эмбриогенеза закладываются 5–7 пар жаберный артерий, затем 1, 2 и 7 – редуцируются, а 3–6 пары функционируют.

У земноводных в связи с появлением легких развивается второй (малый, легочной) круг кровообращения. Сердце трехкамерное и состоит из двух предсердий, разделенных перегородкой (у безногих и хвостатых перегородка неполная, а у бесхвостых – полная) и одного желудочка.

К правому предсердию примыкает венозный синус, от желудочка отходит артериальный конус, который представляет собой продолжение желудочка и является соединительной структурой между желудочком и сосудистой системой.

Артериальный конус разделяется на два артериальных ствола, каждый из которых, в свою очередь, разделен продольными перегородками на три сосуда: общую сонную артерию, кожно-легочную артерию и системную дугу.

Вдоль всей полости артериального конуса тянется спиральный клапан, который делит ее на две половины, при этом поворачиваясь в виде спирали на 360 градусов. С помощью спирального клапана кровь из желудочка направляется к отверстию соответствующей системной дуги, одновременно закрывая отверстия других сосудов.

Оба предсердия открываются в желудочек одним общим отверстием. Из правого предсердия в желудочек поступает венозная кровь с примесью артериальной, а из левого предсердия – артериальная кровь.

Поступившая кровь через артериальный конус распределяется по трем парам артериальных дуг: кожно-легочным артериям (кровь венозная) – к коже и легким; по правой и левой дугам аорты (кровь смешанная) – ко всем органам и тканям; по сонным артериям (кровь артериальная) – к головному мозгу. Во время эмбриогенеза закладываются 5–7 пар жаберных артерий: 1, 2 и 5, 7 – редуцируются, из 3 развиваются сонные артерии, из 4 – дуги аорты, из 6 – кожно-легочные артерии.

В ходе филогенеза и онтогенеза наземных позвоночных редуцирующиеся кардинальные вены заменяются спереди яремными и передними полыми венами, собирающими кровь от головы и передних конечностей, а сзади – системой задней половой вены, к которым добавляется и печеночная вена.

У анамний, рептилий и частично у птиц кроме воротной системы печени имеется воротная система почек, пропускающая кровь от задней половины тела, прежде чем та попадет в сердце (отсутствует у круглоротых и млекопитающих, у костных рыб функционирует только левая воротная система почек).

У птиц только часть крови из воротных вен почек направляется в воротную систему почек, тогда как большая часть крови поступает в общие подвздошные вены, которые являются продолжением воротных вен почек (у рыб, амфибий и рептилий воротную систему почки образует весь сосуд, который в нее входит).

У рептилий сердце трехкамерное. Предсердия разделены полной перегородкой; каждое открывается в желудочек самостоятельным отверстием.

Желудочек имеет неполную горизонтальную перегородку, разделяющую его на две части: в момент систолы перегородка доходит до спинной стенки желудочка, полностью разделяя его, что имеет значение для разделения потоков крови с разным содержанием кислорода (у крокодилов перегородка полная, но с отверстием в центре). Венозная пазуха слита с правым предсердием.

Атрофируется артериальный конус, в результате чего два круга кровообращения отходят самостоятельно. Также как и у земноводных в сердце рептилий три типа крови: венозная, смешанная и артериальная. От правой половины желудочка отходит легочная артерия, которая несет венозную кровь к легким. От левой половины желудочка – правая дуга аорты, которая несет артериальную кровь.

От этой дуги отходят сонные и подключичные артерии, поэтому головной мозг и передние конечности снабжаются артериальной кровью. От средней части желудочка – левая дуга аорты, которая несет смешанную кровь.

Обогнув сердце, левая и правая дуги аорты сливаются в спинную аорту, поэтому в спинной аорте кровь смешанная с преобладанием артериальной, ею снабжаются внутренние органы, туловищная мускулатура и задние конечности. Большой круг заканчивается в правом предсердии передними и задней полыми венами, а малый круг – в левом предсердии, куда впадают легочные вены.

Закладываются 6 пар жаберных артерий: 1, 2 и 5 – редуцируются, из 3 – развиваются сонные артерии, из 4 – дуги аорты, из 6 – легочные артерии. По сравнению с амфибиями рептилии имеют большую частоту сердцебиений, более высокий сердечный индекс (до 2.1), у них выше давление крови и быстрее кровоток. В крови содержится в два раза больше эритроцитов и значительно больше кислородная емкость крови. Все это делает интенсивность обмена веществ примерно в 5 – 10 раз более высокой, чем у земноводных.

У птиц и млекопитающих наблюдается полное разделение сердца на правую и левую половины, полное разделение крови и кругов кровообращения. Правая половина сердца содержит только венозную кровь, левая – артериальную. Редуцируется венозный синус и артериальный конус.

Малый круг кровообращения начинается от правого желудочка легочными артериями, заканчивается в левом предсердии легочными венами.

Большой круг начинается от левого желудочка у птиц правой дугой, а у млекопитающих – левой дугой аорты, заканчивается в правом предсердии передними и задней полыми венами.

Закладываются 6 пар жаберных артерий: 1, 2 и 5 – редуцируются, 3 – дает сонные артерии, 4 правая – правую дугу аорты у птиц (левая редуцируется), – 4 левая – левую дугу аорты у млекопитающих (правая редуцируется), 6 – легочные артерии.

Кровеносная система птиц и млекопитающих отличается высоким сердечным индексом, относительно большой частотой сердечных сокращений, быстрым кровотоком, большим объемом циркулирующей крови, высоким давлением крови в сосудах, а также число эритроцитов и содержание в ней гемоглобина выше, чем у пресмыкающихся. Все это, наряду с высокоэффективной системой газообмена в легких, делает уровень обменных процессов очень высоким (примерно в 20 раз выше, чем у рептилий), поэтому млекопитающие и птицы являются гомойотермными животными.

https://www.youtube.com/watch?v=tzWggCnYVWU

ЭВОЛЮЦИЯ ЛИМФАТИЧЕСКОЙ СИСТЕМЫ

Развитие лимфатической системы происходит в тесной связи с развитием кровеносной. У беспозвоночных и низших позвоночных имеется единая гемолимфатическая система. У ланцетника, круглоротых и ряда рыб еще нет самостоятельной системы лимфатических сосудов. Синусы появляются у круглоротых, но они наполнены кровью и сообщаются с кровеносными сосудами.

У хрящевых рыб примитивная лимфатическая система представлена тонкостенными лимфатическими сосудами разного калибра, лимфатические узлы отсутствуют.

У костных рыб впервые появляется самостоятельная лимфатическая система. Она представлена выраженной системой сосудов, по которым лимфа оттекает от внутренних органов и тканей. В конечном итоге лимфатические сосуды впадают в вены.

Лимфатическая система амфибий и рептилий образована сосудами, щелями и полостями, заполненными лимфой, оттекающей от органов и лимфатическими сердцами. Лимфатические узлы отсутствуют. Движение лимфы по сосудам осуществляется за счет движений мышц, внутренних органов или связано с актом дыхания.

Лимфатические сердца образуются в местах впадения лимфатических сосудов в кровяное русло. Периодически сокращаясь, лимфатические сердца перекачивают лимфу в кровеносные сосуды. Лимфатические сердца снабжены клапанами регулирующими поступление лимфы в кровь. Такие структуры многочисленны у безногих амфибий (около 100), располагаясь парными рядами.

У хвостатых и бесхвостых амфибий и рептилий лимфатические сердца немногочисленны, самые крупные из них расположены в области таза. В отличие от высших позвоночных лимфатические сосуды амфибий впадают в вены в разных местах тела животного, но чаще всего – в кардинальные, или полые вены. Большое количество лимфы находится в подкожных лимфатических мешках.

У рептилий лимфатические сосуды впадают в различные вены, но, главным образом, в яремные вены.

Лимфатическая система птиц характеризуется отсутствием лимфатических сердец (тазовые сохраняются у страусов и некоторых других). Значительное количество лимфатических сосудов впадает в вены таза.

В отличие от лимфатических щелей и полостей низших позвоночных лимфатические сосуды содержат в своих стенках мышечные элементы и снабжены небольшим количеством клапанов, поэтому они не только собирают лимфу, но и обеспечивают ее движение.

У млекопитающих лимфатическая система состоит из лимфатических капилляров, сосудов и большого числа лимфатических узлов. Характерно наличие большого количества клапанов как у отводящих лимфатических сосудов, так и у грудного протока.

Клапаны играют главную роль в поддержании лимфатока и определении его направления. У млекопитающих лимфа на пути от периферии к центральным коллекторным лимфатическим сосудам проходит через один или несколько лимфатических узлов, прежде чем дойдет до грудного протока.

Основная масса лимфы впадает в кровяное русло в области яремных вен.

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/4_102477_evolyutsiya-krovenosnoy-sistemi.html

Анатомия сердца человека. Просто и доступно

У кого появилось впервые сердце

Сердце — один из самых романтичных и чувственных органов человеческого организма. Во многих культурах его считают вместилищем души, местом, где зарождаются привязанность и любовь. Тем не менее, с точки зрения анатомии картина выглядит более прозаично.

Здоровое сердце представляет собой сильный мышечный орган размером примерно с кулак его обладателя. Работа сердечной мышцы ни на секунду не прекращается с момента появления человека на свет и вплоть до самой смерти.

Перекачивая кровь, сердце снабжает кислородом все органы и ткани, способствует удалению продуктов распада и выполняет часть очистительных функций организма. Поговорим об особенностях анатомического строения этого удивительного органа.

Анатомия сердца человека: историко-медицинский экскурс

Кардиологию — науку, изучающую строение сердца и сосудов, — выделили как отдельную отрасль анатомии ещё в 1628 году, когда Гарвей выявил и представил медицинскому сообществу законы кровообращения человека. Он продемонстрировал, как сердце, словно насос, проталкивает кровь по сосудистому руслу в строго определённом направлении, снабжая органы питательными веществами и кислородом.

Сердце располагается в грудном отделе человека, немного левее центральной оси. Форма органа может варьироваться в зависимости от индивидуальных особенностей строения организма, возраста, конституции, пола и других факторов.

Так, у плотных низкорослых людей сердце более округлое, чем у худых и высоких.

Считается, что его форма примерно совпадает с окружностью плотно сжатого кулака, а вес колеблется в диапазоне от 210 граммов у женщин до 380 граммов у мужчин.

Объём крови, перекачанной сердечной мышцей за сутки, составляет примерно 7–10 тысяч литров, причём эта работа ведётся непрерывно! Количество крови может изменяться из-за физического и психологического состояния.

При стрессе, когда организм нуждается в кислороде, нагрузка на сердце возрастает в разы: в такие моменты оно способно передвигать кровь со скоростью до 30 литров в минуту, восстанавливая резервы организма.

Тем не менее, постоянно работать на износ орган не в состоянии: в моменты покоя ток крови замедляется до 5 литров в минуту, а мышечные клетки, образующие сердце, отдыхают и восстанавливаются.

Строение сердца: анатомия тканей и клеток

Сердце относят к мышечным органам, однако, ошибочно считать, что оно состоит из одних лишь мышечных волокон. Стенка сердца включает три слоя, каждый из которых имеет свои особенности:

1. Эндокард — это внутренняя оболочка, выстилающая поверхность камер. Она представлена сбалансированным симбиозом эластичных соединительных и гладкомышечных клеток.

Очертить чёткие границы эндокарда практически нереально: истончаясь, он плавно переходит в прилегающие кровеносные сосуды, а в особо тонких местах предсердий срастается прямо с эпикардом, минуя средний, самый обширный слой – миокард.

2. Миокард — это мышечный каркас сердца.

Несколько слоёв поперечнополосатой мышечной ткани соединяются таким образом, чтобы быстро и целенаправленно реагировать на возбуждение, возникшее в одной области и проходящее всему органу, выталкивая кровь в сосудистое русло.

Помимо мышечных клеток, в миокард входят P-клетки, способные передавать нервный импульс. Степень развития миокарда в отдельных областях зависит от объёма возложенных на него функций. К примеру, миокард в области предсердий куда тоньше желудочкового.

В этом же слое находится фиброзное кольцо, анатомически разделяющее предсердия и желудочки. Такая особенность позволяет камерам сокращаться поочерёдно, выталкивая кровь в строго определённом направлении.

3. Эпикард — поверхностный слой сердечной стенки. Серозная оболочка, образованная эпителиальной и соединительной тканью, является промежуточным звеном между органом и сердечной сумкой — перикардом. Тонкая прозрачная структура защищает сердце от повышенного трения и способствует взаимодействию мышечного слоя с прилегающими тканями.

Снаружи сердце окружено перикардом — слизистой оболочкой, которую иначе называют сердечной сумкой. Она состоит из двух листков — наружного, обращённого к диафрагме, и внутреннего, плотно прилегающего к сердцу. Между ними находится заполненная жидкостью полость, благодаря которой снижается трение во время сердечных сокращений.

Камеры и клапаны

Полость сердца разделена на 4 отдела:

  • правое предсердие и желудочек, заполненные венозной кровью;
  • левое предсердие и желудочек с артериальной кровью.

Правая и левая половины разделены плотной перегородкой, которая препятствует смешиванию двух видов крови и поддерживает односторонний кровоток.

Правда, эта особенность имеет одно небольшое исключение: у детей, находящихся в утробе, в перегородке присутствует овальное окно, через которое кровь смешивается в полости сердца.

В норме к рождению это отверстие зарастает и сердечно-сосудистая система функционирует, как и у взрослого. Неполное закрытие овального окна считается серьёзной патологией и требует оперативного вмешательства.

Между предсердиями и желудочками попарно расположены митральный и трёхстворчатый клапаны, которые удерживаются благодаря сухожильным нитям. Синхронное сокращение клапанов обеспечивает односторонний ток крови, препятствуя смешиванию артериального и венозного потока.

От левого желудочка отходит самая большая артерия кровеносного русла — аорта, а в правом желудочке берёт своё начало лёгочный ствол. Чтобы кровь передвигалась исключительно в одном направлении, между камерами сердца и артериями находятся полулунные клапаны.

Приток крови обеспечивается благодаря венозной сети. Нижние полые вены впадают в правое предсердие, а лёгочные, соответственно, в левое.

Анатомические особенности сердца человека

Поскольку от нормальной работы сердца напрямую зависит обеспечение остальных органов кислородом и питательными веществами, оно должно идеально подстраиваться под изменчивые условия окружающей среды, работая в различном диапазоне частот. Такая изменчивость возможна благодаря анатомическим и физиологическим особенностям сердечной мышцы:

  1. Автономия подразумевает полную независимость от центральной нервной системы. Сердце сокращается от импульсов, продуцированных им самим, поэтому работа ЦНС никак не влияет на частоту сердечных сокращений.
  2. Проводимость заключается в передаче образованного импульса по цепочке другим отделам и клеткам сердца.
  3. Возбудимость подразумевает мгновенную реакцию на изменения, протекающие в организме и вне его.
  4. Сократимость, то есть сила сокращения волокон, прямо пропорциональная их длине.
  5. Рефрактерность — период, во время которого ткани миокарда невозбудимы.

Любой сбой в этой системе может привести к резкому и неконтролируемому изменению ЧСС, асинхронности сердечных сокращений вплоть до фибрилляции и летального исхода.

Фазы работы сердца

Чтобы непрерывно продвигать кровь по сосудам, сердце должно сокращаться. Исходя из стадии сокращения, выделяют 3 фазы сердечного цикла:

  • Систола предсердий, во время которой кровь поступает из предсердий в желудочки. Чтобы не препятствовать току, митральный и трёхстворчатый клапан в этот момент раскрываются, а полулунные, наоборот, закрываются.
  • Систола желудочков подразумевает продвижение крови дальше к артериям через открытые полулунные клапаны. При этом створчатые клапаны закрываются.
  • Диастола включает наполнение предсердий венозной кровью через открытые створчатые клапаны.

Каждое сердечное сокращение длится примерно одну секунду, но при активной физической работе или во время стресса скорость импульсов увеличивается за счёт сокращения длительности диастолы. Во время полноценного отдыха, сна или медитации сердечные сокращения, наоборот, замедляются, диастола становится длиннее, поэтому организм активнее очищается от метаболитов.

Анатомия коронарной системы

Чтобы полноценно выполнять возложенные функции, сердце должно не только перекачивать кровь по всему организму, но и само получать питательные вещества из кровеносного русла.

Аортальная система, несущая кровь к мышечным волокнам сердца, называется коронарной и включает две артерии — левую и правую.

Обе они отходят от аорты и, продвигаясь в противоположном направлении, насыщают клетки сердца полезными веществами и кислородом, содержащимся в крови.

Проводящая система сердечной мышцы

Непрерывное сокращение сердца достигается за счёт его автономной работы. Электрический импульс, запускающий процесс сокращения мышечных волокон, генерируется в синусовом узле правого предсердия с периодичностью 50–80 толчков в минуту.

По нервным волокнам атрио-вентрикулярного узла он передаётся к межжелудочковой перегородке, далее — по крупным пучкам (ножкам Гиса) к стенкам желудочков, а затем переходит на более мелкие нервные волокна Пуркинье.

Благодаря этому сердечная мышца может поступательно сокращаться, выталкивая кровь из внутренней полости в сосудистое русло.

Образ жизни и здоровье сердца

От полноценной работы сердца напрямую зависит состояние всего организма, поэтому целью любого здравомыслящего человека является поддержание здоровья сердечно-сосудистой системы. Чтобы не столкнуться с сердечными патологиями, следует постараться исключить или хотя бы свести к минимуму провоцирующие факторы:

  • наличие лишнего веса;
  • курение, употребление алкогольных и наркотических веществ;
  • нерациональную диету, злоупотребление жирной, жареной, солёной пищей;
  • повышенный уровень холестерина;
  • малоактивный образ жизни;
  • сверхинтенсивные физические нагрузки;
  • состояние непреходящего стресса, нервное истощение и переутомление.

Зная чуть больше об анатомии сердца человека, постарайтесь сделать над собой усилие, отказавшись от разрушительных привычек. Измените свою жизнь к лучшему, и тогда ваше сердце будет работать, как часы.

Источник: https://www.oum.ru/literature/anatomiya-cheloveka/anatomiya-serdtsa-cheloveka/

БолиНет
Добавить комментарий