Мазок крови человека рисунок

Клинический анализ крови: от светового микроскопа к гематологическим анализаторам

Мазок крови человека рисунок
Общий клинический анализ крови – это самый распространенный диагностический тест, который назначает пациенту врач. За последние десятилетия технология этого рутинного, но очень информативного исследования проделала колоссальный рывок – она стала автоматической.

В помощь врачу лабораторной диагностики, орудием труда которого был обычный световой микроскоп, пришли высокотехнологичные автоматические гематологические анализаторы.

В этом посте мы расскажем, что именно происходит внутри «умной машины», видящей нашу кровь насквозь, и почему ей следует верить.

Мы будем рассматривать физику процессов на примере гематологического анализатора UniCel DxH800 мирового бренда Beckman Coulter. Именно на этом оборудовании выполняются исследования, заказанные в сервисе лабораторной диагностики LAB4U.RU.

Но для того, чтобы понять технологию автоматического анализа крови, мы разберемся с тем, что видели врачи-лаборанты под микроскопом и как они интерпретировали эту информацию.

Итак, в крови содержится три вида клеток:

  • лейкоциты, обеспечивающие иммунную защиту;
  • тромбоциты, отвечающие за свертываемость крови;
  • эритроциты, осуществляющие транспорт кислорода и углекислого газа.

Эти клетки находятся в крови в совершенно определенных количествах. Их обуславливают возраст человека и состояние его здоровья. В зависимости от условий, в которых находится организм, костный мозг производит столько клеток, сколько их требуется организму. Поэтому, зная количество определенного вида клеток крови и их форму, размер и другие качественные характеристики, можно уверенно судить о состоянии и текущих потребностях организма. Именно эти ключевые параметры – количество клеток каждого вида, их внешний вид и качественные характеристики – составляют общий клинический анализ крови. При проведении общего анализа крови производят подсчет количества эритроцитов, тромбоцитов и лейкоцитов. С лейкоцитами сложнее: их несколько видов, и каждый вид выполняет свою функцию. Выделяют 5 разных видов лейкоцитов:

  1. нейтрофилы, нейтрализующие в основном бактерии;
  2. эозинофилы, нейтрализующие иммунные комплексы антиген-антитело;
  3. базофилы, участвующие в аллергических реакциях;
  4. моноциты – главные макрофаги и утилизаторы;
  5. лимфоциты, обеспечивающие общий и местный иммунитет.

В свою очередь, нейтрофилы по степени зрелости разделяют на:

  • палочкоядерные,
  • сегментоядерные,
  • миелоциты,
  • метамиелоциты.

Процент каждого вида лейкоцитов в их общем объеме называют лейкоцитарной формулой, которая имеет важное диагностическое значение. Например, чем более выражен бактериальный воспалительный процесс, тем больше нейтрофилов в лейкоцитарной формуле. Наличие нейтрофилов разной степени зрелости говорит о тяжести бактериальной инфекции. Чем острее процесс, тем больше в крови палочкоядерных нейтрофилов. Появление в крови метамиелоцитов и миелоцитов говорит о крайне тяжелой бактериальной инфекции. Для вирусных заболеваний характерно увеличение лимфоцитов, при аллергических реакциях – увеличение эозинофиллов. Помимо количественных показателей, крайне важна морфология клеток. Изменение их обычной формы и размеров также свидетельствует о наличии определенных патологических процессов в организме. Важный и наиболее известный показатель – количество в крови гемоглобина – сложного белка, обеспечивающего поступление кислорода к тканям и выведение углекислого газа. Концентрация гемоглобина в крови – главный показатель при диагностике анемий. Еще один из важных параметров – это скорость оседания эритроцитов (СОЭ). При воспалительных процессах у эритроцитов появляется свойство слипаться друг с другом, образуя небольшие сгустки. Обладая большей массой, слипшиеся эритроциты под действием силы тяжести оседают быстрее, чем одиночные клетки. Изменение скорости их оседания в мм/ч является простым индикатором воспалительных процессов в организме. Забор крови Вспомним, как раньше сдавали кровь: болезненный прокол подушечки скарификатором, бесконечные стеклянные трубочки, в которые собирали драгоценные капли выжатой крови. Как лаборант одним стёклышком проводил по другому, где находилась капля крови, царапая на стекле номер простым карандашом. И бесконечные пробирки с разными жидкостями. Сейчас это уже кажется какой-то алхимией. Кровь брали именно из безымянного пальца, на что были вполне серьезные причины: анатомия этого пальца такова, что его травмирование дает минимальную угрозу сепсиса в случае инфицирования ранки. Забор крови из вены считался куда более опасным. Поэтому анализ венозной крови не был рутинным, а назначался по необходимости, и в основном в стационарах. Стоит отметить, что уже на этапе забора начинались значительные погрешности. Например, разная толщина кожи дает разную глубину укола, вместе с кровью в пробирку попадала тканевая жидкость – отсюда изменение концентрации крови, кроме того, при давлении на палец клетки крови могли разрушаться. Помните ряд пробирок, куда помещали собранную из пальца кровь? Для подсчета разных клеток действительно нужны были разные пробирки. Для эритроцитов – с физраствором, для лейкоцитов – с раствором уксусной кислоты, где эритроциты растворялись, для определения гемоглобина – с раствором соляной кислоты. Отдельный капилляр был для определения СОЭ. И на последнем этапе делался мазок на стекле для последующего подсчета лейкоцитарной формулы. Для подсчета клеток под микроскопом в лабораторной практике использовался специальный оптический прибор, предложенный еще в ХIX веке русским врачом, именем которого этот прибор и был назван – камера Горяева. Она позволяла определить количество клеток в заданном микрообъеме жидкости и представляла собой толстое предметное стекло с прямоугольным углублением (камерой). На нее была нанесена микроскопическая сетка. Сверху камера Горяева накрывалась тонким покровным стеклом. Эта сетка состояла из 225 больших квадратов, 25 из которых были разделены на 16 малых квадратов. Эритроциты считались в маленьких исчерченных квадратах, расположенных по диагонали камеры Горяева. Причем существовало определенное правило подсчета клеток, которые лежат на границе квадрата. Расчет числа эритроцитов в литре крови осуществлялся по формуле, исходя из разведения крови и количества квадратов в сетке. После математических сокращений достаточно было посчитанное количество клеток в камере умножить на 10 в 12-й степени и внести в бланк анализа. Лейкоциты считали здесь же, но использовали уже большие квадраты сетки, поскольку лейкоциты в тысячу раз больше, чем эритроциты. После подсчета лейкоцитов их количество умножали на 10 в 9-й степени и вносили в бланк. У опытного лаборанта подсчет клеток занимал в среднем 3-5 мин. Методы подсчета тромбоцитов в камере Горяева были очень трудоемки из-за малой величины этого вида клеток. Оценивать их количество приходилось только на основе окрашенного мазка крови, и сам процесс был тоже весьма трудоемким. Поэтому, как правило, количество тромбоцитов рассчитывали только по специальному запросу врача.

Лейкоцитарную формулу, то есть процентный состав лейкоцитов каждого вида в общем их количестве мог определять только врач – по результатам изучения мазков крови на стеклах.

Визуально определяя находящиеся в поле зрения различные виды лейкоцитов по форме их ядра, врач считал клетки каждого вида и общее их количество. Насчитав 100 в совокупности, он получал требуемое процентное соотношение каждого вида клеток. Для упрощения подсчета использовались специальные счетчики с отдельными клавишами для каждого вида клеток. Примечательно, что такой важный параметр, как гемоглобин, определялся лаборантом визуально (!) по цвету гемолизированной крови в пробирке с соляной кислотой. Метод был основан на превращении гемоглобина в солянокислый гематин коричневого цвета, интенсивность окраски которого пропорциональна содержанию гемоглобина. Полученный раствор солянокислого гематина разводили водой до цвета стандарта, соответствующего известной концентрации гемоглобина. В общем, прошлый век Начнем с того, что сейчас полностью поменялась технология забора крови. На смену скарификаторам и стеклянным капиллярам с пробирками пришли вакуумные контейнеры. Использующиеся теперь системы забора крови малотравматичны, процесс полностью унифицирован, что значительно сократило процент погрешностей на этом этапе. Вакуумные пробирки, содержащие консерванты и антикоагулянты, позволяют сохранять и транспортировать кровь от точки забора до лаборатории. Именно благодаря появлению новой технологии стало возможным сдавать анализы максимально удобно – в любое время, в любом месте. На первый взгляд, автоматизировать такой сложный процесс, как идентификация клеток крови и их подсчет, кажется невозможно. Но, как обычно, все гениальное просто. В основе автоматического анализа крови лежат фундаментальные физические законы. Технология автоматического подсчета клеток была запатентована в далеком 1953 году американцами Джозефом и Уолессом Культерами. Именно их имя стоит в название мирового бренда гематологического оборудования Bеckman&Coulter. Апертурно-импедансный метод (метод Культера или кондуктометрический метод) основан на подсчете количества и оценке характера импульсов, возникающих при прохождении клетки через отверстие малого диаметра (апертуру), по обе стороны которого расположены два электрода. При прохождении клетки через канал, заполненный электролитом, возрастает сопротивление электрическому току. Каждое прохождение клетки сопровождается появлением электрического импульса. Чтобы выяснить, какова концентрация клеток, необходимо пропустить через канал определенный объем пробы и сосчитать количество появившихся импульсов. Единственное ограничение – концентрация пробы должна обеспечивать прохождение через апертуру только одной клетки в каждый момент времени.
За прошедшие более 60 лет технология автоматического гематологического анализа прошла большой путь. Вначале это были простые счетчики клеток, определяющие 8-10 параметров: количество эритроцитов (RBC), количество лейкоцитов (WBC), гемоглобин (Hb) и несколько расчетных. Такими были анализаторы первого класса.

Второй класс анализаторов определял уже до 20 различных параметров крови.

Они существенно выше по уровню в дифференциации лейкоцитов и способны выделять популяции гранулоцитов (эозинофилы + нейтрофилы + базофилы), лимфоцитов и интегральной популяции средних клеток, куда относились моноциты, эозинофилы, базофилы и плазматические клетки. Такая дифференциация лейкоцитов успешно использовалась при обследовании практически здоровых людей.

Самыми технологичными и инновационными анализаторами на сегодняшний день являются машины третьего класса, определяющие до сотни различных параметров, проводящие развернутое дифференцирование клеток, в том числе по степени зрелости, анализирующие их морфологию и сигнализирующие врачу-лаборанту об обнаружении патологии. Машины третьего класса, как правило, снабжены еще и автоматическими системами приготовления мазков (включая их окраску) и вывода изображения на экран монитора. К таким передовым гематологическим системам относятся оборудование BeckmanCoulter, в частности система клеточного анализа UniCel DxH 800.

Современные аппараты BeckmanCoulter используют метод многопараметрической проточной цитометрии на основе запатентованной технологии VCS (Volume-Conductivity-Scatter). VCS-технология подразумевает оценку объема клетки, ее электропроводимость и светорассеяние. Первый параметр – объем клетки – измеряется с использованием принципа Культера на основе оценки сопротивления при прохождении клеткой апертуры при постоянном токе. Величину и плотность клеточного ядра, а также ее внутренний состав определяют с помощью измерения ее электропроводности в переменном токе высокой частоты. Рассеяние лазерного света под разными углами позволяет получить информацию о структуре клеточной поверхности, гранулярности цитоплазмы и морфологии ядра клетки. Полученные по трем каналам данные комбинируются и анализируются. В результате клетки распределяются по кластерам, включая разделение по степени зрелости эритроцитов и лейкоцитов (нейтрофилов). На основе полученных измерений этих трех размерностей определяется множество гематологических параметров – до 30 в диагностических целях, более 20 в исследовательских целях и более ста специфичных расчетных параметров для узкоспециализированных цитологических исследований. Данные визуализируются в 2D- и 3D-форматах. Врач-лаборант, работающий с гематологическим анализатором BackmanCoulter, видит результаты анализа на мониторе примерно в таком виде: А далее принимает решение – надо ли их верифицировать или нет. Стоит ли говорить, что информативность и точность современного автоматического анализа во много раз выше мануального? Производительность машин подобного класса – порядка сотни образцов в час при анализе тысяч клеток в образце. Вспомним, что при микроскопии мазка врачом анализировалось только 100 клеток! Однако несмотря на эти впечатляющие результаты, именно микроскопия до сих пор пока остается «золотым стандартом» диагностики. В частности, при выявлении аппаратом патологической морфологии клеток образец анализируется под микроскопом вручную. При обследовании больных с гематологическими заболеваниями микроскопия окрашенного мазка крови проводится только вручную опытным врачом-гематологом. Именно так, вручную, дополнительно к автоматическому подсчету клеток, выполняется оценка лейкоцитарной формулы во всех детских анализах крови по заказам, сделанным с помощью лабораторного онлайн-сервиса LAB4U.RU. Технологии автоматизированного гематологического анализа продолжают активно развиваться. По существу они уже заменили микроскопию при выполнении рутинных профилактических анализов, оставив ее для особо значимых ситуаций. Мы имеем в виду детские анализы, анализы людей, имеющих подтвержденные заболевания, особенно гематологические. Однако в обозримом будущем и на этом участке лабораторной диагностики врачи получат аппараты, способные самостоятельно выполнять морфологический анализ клеток с использованием нейронных сетей. Снизив нагрузку на врачей, они в то же время повысят требования к их квалификации, поскольку в зоне принятия решений человеком останутся только нетипичные и патологические состояния клеток.

Количество информативных параметров анализа крови, увеличившиеся многократно, поднимает требования к профессиональной квалификации и врача-клинициста, которому необходимо анализировать сочетания значений массы параметров в диагностических целях.

На помощь врачам этого фронта идут экспертные системы, которые, используя данные анализатора, предоставляют рекомендации по дальнейшему обследованию пациента и выдают возможный диагноз. Такие системы уже представлены на лабораторном рынке.

Но это уже тема отдельной статьи.

Источник: https://habr.com/post/328508/

Мазок крови человека (окр. по Романовскому-Гимза)

Мазок крови человека рисунок

Задание для самоподготовки к диагностическому занятию №1

Список учебных препаратов:

Мазок крови человека (окр. по Романовскому-Гимза)

Уметь находить все форменные элементы!

Кровь – своеобразная соединительная ткань (относится к тканям внутренней среды человека) с жидким межклеточный веществом (плазмой), в котором находятся разнообразные клетки (лейкоциты) и постклеточные структуры (эритроциты, тромбоциты).

Происходит из мезенхимы.

Функции крови:

· транспортная – универсальная функция крови, связанная с обеспечением переноса разнообразных веществ.

Включает:

дыхательную ф.- перенос газов в растворенном и химически связанном состоянии

трофическую ф.- перенос питательных веществ из участков их всасывания и накопления к тканям

экскреторную ф.- удаление из тканей продуктов метаболизма и их выделение из организма

регуляторная ф.- перенос гормонов и др. БАВ к клеткам разных тканей, терморегуляторная функция

· гомеостатическая – поддержание постоянства внутренней среды организма

· защитная – нейтрализация чужеродных антигенов, обезвреживание микроорганизмов

В состав плазмы входят: вода, белки (альбумины, глобулины, фибриноген), липиды, низкомолекулярные органические соединения, неорганические ионы.

Форменные элементы:

1. Эритроциты

Морфология: лишены ядер, окрашены эозином в розовый цвет, имеют округлую форму и просветление в центре (двояковогнутый диск).

Функции: дыхательная, регуляторная, защитная.

2. Лейкоциты

Базофилы

Морфология: наличие крупных базофильных гранул фиолетово-вишневого цвета, заполняющих почти всю цитоплазму, ядра дольчатые, трудно различимы за гранулами.

Функции: регуляторная, гомеостатическая ( через накапливаемые или синтезируемые БАВ), защитная.

Эозинофилы

Морфология: ядро состоит из 2 сегментов, в цитоплазме много оксифильных гранул.

Функции: защитная, иммунорегуляторная.

Нейтрофилы

Бывают : сегментоядерные, палочкоядерные, юные.

Морфология: ядро состоит из 3-4связанных сегментов, в цитоплазме трудно различимая мелкая зернистость.

Функции: уничтожение микроорганизмов, разрушение и переваривание поврежденных клеток и тканей, участие в регуляции деятельности других клеток.

Лимфоциты

Морфология: округлое сильно окрашенное ядро, узкий ободок базофильной цитоплазмы без гранул.

Функции: обеспечение реакций иммунитета, регуляция деятельности других клеток.

Моноциты

Морфология: крупное бобовидное или подковообразное светлое ядро, слабобазофильная цитоплазма.

Функции: обеспечение реакций неспецифической защиты, участие в иммунных реакциях, захват и переваривание стареющих и погибших клеток, секреция регуляторных веществ.

3. Тромбоциты

Морфология: безъядерные фрагменты цитоплазмы, имеют небольшой размер.

Функции: остановка кровотечений при повреждении стенки сосудов, гемокоагуляция, участие в реакциях заживления ран, обеспечение нормальной функции сосудов.

2. Мазок красного костного мозга (окр.азур2+эозин).

Уметь находить стадии развития эритроцитов, гранулоцитов, мегакариоциты.

http://www.histol.chuvashia.com/atlas/bon-mar.htm

Рыхлая волокнистая соединительная ткань. Пленочный препарат (окр. железный гематоксилин).

Уметь находить фибробласты и макрофаги.

Плотная оформленная соединительная ткань (сухожилие на продольном срезе) (окр. гематоксилин и эозин).

Уметь находить параллельно идущие пучки коллагеновых волокон, фиброциты и прослойки рыхлой соединительной ткани – эндотеноний (отделяет друг от друга пучки 2 порядка).

Плотная оформленная соединительная ткань (сухожилие на поперечном срезе) (окр. гематоксилин и эозин).

Уметь находить соединительнотканную оболочку снаружи сухожилия – перитеноний, определять сухожильные пучки 1 и 2 порядка.

6. Плотная неоформленная соединительная ткань кожи пальца человека (окр. орсеин+пикрофуксин+гематоксилин).

Пигментная ткань

Задание для самоподготовки к диагностическому занятию №1

Список учебных препаратов:

Мазок крови человека (окр. по Романовскому-Гимза)

Уметь находить все форменные элементы!

Кровь – своеобразная соединительная ткань (относится к тканям внутренней среды человека) с жидким межклеточный веществом (плазмой), в котором находятся разнообразные клетки (лейкоциты) и постклеточные структуры (эритроциты, тромбоциты).

Происходит из мезенхимы.

Функции крови:

· транспортная – универсальная функция крови, связанная с обеспечением переноса разнообразных веществ.

Включает:

дыхательную ф.- перенос газов в растворенном и химически связанном состоянии

трофическую ф.- перенос питательных веществ из участков их всасывания и накопления к тканям

экскреторную ф.- удаление из тканей продуктов метаболизма и их выделение из организма

регуляторная ф.- перенос гормонов и др. БАВ к клеткам разных тканей, терморегуляторная функция

· гомеостатическая – поддержание постоянства внутренней среды организма

· защитная – нейтрализация чужеродных антигенов, обезвреживание микроорганизмов

В состав плазмы входят: вода, белки (альбумины, глобулины, фибриноген), липиды, низкомолекулярные органические соединения, неорганические ионы.

Форменные элементы:

1. Эритроциты

Морфология: лишены ядер, окрашены эозином в розовый цвет, имеют округлую форму и просветление в центре (двояковогнутый диск).

Функции: дыхательная, регуляторная, защитная.

2. Лейкоциты

Базофилы

Морфология: наличие крупных базофильных гранул фиолетово-вишневого цвета, заполняющих почти всю цитоплазму, ядра дольчатые, трудно различимы за гранулами.

Функции: регуляторная, гомеостатическая ( через накапливаемые или синтезируемые БАВ), защитная.

Эозинофилы

Морфология: ядро состоит из 2 сегментов, в цитоплазме много оксифильных гранул.

Функции: защитная, иммунорегуляторная.

Нейтрофилы

Бывают : сегментоядерные, палочкоядерные, юные.

Морфология: ядро состоит из 3-4связанных сегментов, в цитоплазме трудно различимая мелкая зернистость.

Функции: уничтожение микроорганизмов, разрушение и переваривание поврежденных клеток и тканей, участие в регуляции деятельности других клеток.

Лимфоциты

Морфология: округлое сильно окрашенное ядро, узкий ободок базофильной цитоплазмы без гранул.

Функции: обеспечение реакций иммунитета, регуляция деятельности других клеток.

Моноциты

Морфология: крупное бобовидное или подковообразное светлое ядро, слабобазофильная цитоплазма.

Функции: обеспечение реакций неспецифической защиты, участие в иммунных реакциях, захват и переваривание стареющих и погибших клеток, секреция регуляторных веществ.

3. Тромбоциты

Морфология: безъядерные фрагменты цитоплазмы, имеют небольшой размер.

Функции: остановка кровотечений при повреждении стенки сосудов, гемокоагуляция, участие в реакциях заживления ран, обеспечение нормальной функции сосудов.

2. Мазок красного костного мозга (окр.азур2+эозин).

Уметь находить стадии развития эритроцитов, гранулоцитов, мегакариоциты.

http://www.histol.chuvashia.com/atlas/bon-mar.htm

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Источник: https://zdamsam.ru/a33772.html

Кафедра гистологии, цитологии и эмбриологии ХНМУ – атлас

Мазок крови человека рисунок
Общая морфология клетки. Клетки печени (гепатоциты) аксолотля.Окраска гематоксилином и эозином, Х400.1.– цитоплазма2.– ядро

3. – ядрышко

Комплекс Гольджи в нейроцитах спинномозгового ганглия.Импрегнация четырехокисью осмия, X400.1. Ядро2. Ядрышко

3. Пластинчатый комплекс Гольджи

Включения гликогена в клетках печени аксолотляМетод окраски – кармином по Бесту, X400.

1. Глыбки гликогена

Включения жира в клетках печени аксолотля.Для выявления жировых включений препарат профиксирован четырехокисью осмия и затем окрашен сафранином, X400.1.Границы клеток2.Ядра

3.Включения жира

Пигментные включения в пигментных клетках (меланоцитах).Препарат не окрашен, X1400.1. Отростки меланоцитов

2. Ядра

Митоз в корешках лука.Препарат окрашен железным гематоксилином, Х100.1. Начало профазы2. Метафаза3. Поздняя анафаза4. Телофаза

5. Интерфаза

Митоз в корешках лука.Препарат окрашен железным гематоксилином, Х100.1. Начало профазы2. Метафаза3. Поздняя анафаза4. Телофаза

5. Интерфаза

Яйцеклетка внутри однослойного первичного фолликула яичника морской свинки.Окраска гематоксилин-эозином, Х400.1. Ядро2. Цитоплазматические желточные включения3. Формирующаяся блестящая оболочка

4. Призматические фолликулярные клетки, лежащие в один слой.

Сперматозоиды морской свинки.Окраска железным гематоксилином, Х400.1. Головка с ядром внутри2. Акросома3. Шейка

4. Хвост

Бластула лягушки.Окраска гематоксилином и пикрофуксином, Х100.1. Вегетативный полюс2. Анимальный полюс

3. Бластоцель

Бластула лягушки.Окраска гематоксилином и пикрофуксином, Х100.1. Вегетативный полюс2. Анимальный полюс

3. Бластоцель

Зародыш курицы на стадии первичной полоски. Поперечный срез.(окраска гематоксилином), Х40.1. Эктодерма2. Энтодерма3. Первичная бороздка4. Первичная полоска

5. Мезодерма

Зародыш курицы на стадии первичной полоски. Поперечный срез.(окраска гематоксилином), Х40.1. Эктодерма2. Энтодерма3. Первичная бороздка4. Первичная полоска

5. Мезодерма

Зародыш курицы на стадии образования осевых органов (поперечный срез.Окраска железным гематоксилином, X40.1. Эктодерма2. Энтодерма3. Нервная трубка4. Хорда5. Сомиты6. Нефротомы7. Соматоплевра (париетальный листок спланхнотома)8. Спланхноплевра (висцеральный листок спланхнотома)9. Мезенхима10. Целом

11. Кровеносные сосуды

Зародыш курицы на стадии образования туловищных и амниотических складок (поперечный срез, окраска железным гематоксилином), Х401.Туловищная складка2.Кишечная энтодерма3.Хорда4.Нервная трубка5.

Кожная эктодерма6.Дерматомы7. Формирование почечных канальцев на месте нефротомов8. Целом9. Париетальный листок спланхнотома10. Висцерельный листок спланхнотома11. Кровеносные сосуды

12.

Амниотическая складка

Однослойный низкий призматический (кубический) эпителийОкраска гематоксилином и эозином, Х400* – эпителиоциты1.Апикальный полюс2.Базальный полюс

3.Подлежащая соединительная ткань

Однослойный высокий призматический (цилиндрический) эпителийОкраска гематоксилином и эозином, Х4001.Эпителиоциты2.Базальный полюс3.Апикальный полюс4.Кровеносные сосуды

5.Базальная мембрана

Однослойный плоский целомический эпителий – мезотелийПленочный препарат малого сальника кролика.Препарат после обработки азотнокислым серебром докрашен гематоксилином, Х4001.Границы клеток

2.Ядра

Однослойный многорядный мерцательный (реснитчатый) эпителийПрепарат окрашен железным гематоксилином, Х4001.Ядра2.Мерцательные реснички3.Базальные тельца ресничек

4.Подлежащая соединительная ткань

Однослойный многорядный мерцательный (реснитчатый) эпителийПрепарат окрашен железным гематоксилином, Х4001.Ядра2.Мерцательные реснички3.Базальные тельца ресничек

4.Подлежащая соединительная ткань

Переходный эпителий мочевого пузыряОкраска гематоксилином и эозином, Х1001.Базальный слой2.Подлежащая соединительная ткань3.Промежуточный слой клеток

4.Поверхностный слой клеток

Переходный эпителий мочевого пузыряОкраска гематоксилином и эозином, Х4001.Базальный слой2.Подлежащая соединительная ткань3.Промежуточный слой клеток

4.Поверхностный слой клеток

Простые трубчатые железы матки кошки.Окраска гематоксилином и эозином, Х100.1.Железы2.Кубический эпителий

3.Соединительная ткань

Секреторные гранулы в клетках Лейдига кожи аксолотля.(Одноклеточные эндоэпителиальные железы (клетки Лейдига) и простые альвеолярные неразветвленные экзоэпителиальные железы)Препарат приготовлен из кожи земноводного аксолотля.

Окрашен гематоксилином и эозином, Х100.1. Клетки Лейдига (не путать с клетками Лейдига в тестикулах! Лейдиг тот же, да клетки другие и не там)2. Соединительная ткань3. Простые альвеолярные неразветвленные железы4. Место выводного протока

5.

Пигментные клетки

Секреторные гранулы в клетках Лейдига кожи аксолотля.Одноклеточные эндоэпителиальные железы (клетки Лейдига) и простые альвеолярные неразветвленные экзоэпителиальные железыПрепарат приготовлен из кожи земноводного аксолотля. Окрашен гематоксилином и эозином, Х4001.Клетки Лейдига

5.Пигментные клетки

Мезенхима зародыша цыпленкаПрепарат окрашен железным гематоксилином, Х400* – Мезенхима1.Ядра клеток

2.Отростки клеток

Кровь человека (мазок)Мазок крови окрашен по Романовскому – Гимзе, Х400.1.Эритроциты2.Тромбоциты3.Сегментоядерные нейтрофилы4.Палочкоядерные нейтрофилы5.Лимфоциты

8.Моноциты

Кровь человека (мазок)Мазок крови окрашен гематоксилином и эозином или по Романовскому – Гимзе, Х4001.Эритроциты3.Сегментоядерные нейтрофилы4.Палочкоядерные нейтрофилы

5.Лимфоциты

Кровь человека (мазок)Мазок крови окрашен гематоксилином и эозином или по Романовскому – Гимзе, Х4003.Сегментоядерные нейтрофилы

8.Моноциты

Кровь человека (мазок)Мазок крови окрашен гематоксилином и эозином или по Романовскому – Гимзе, X400.

6.Эозинофил

Сегментоядерные нейтрофилы, Х1000Рыхлая соединительная ткань крысы.Окраска железным гематоксилином, Х100*- основное вещество1.Коллагеновые волокна2.Эластические волокна3.Фибробласты

4.Макрофаги

Рыхлая соединительная тканьОкраска железным гематоксилином, Х4005.Тканевые лимфоциты

6.Плазмоциты

Рыхлая соединительная тканьОкраска железным гематоксилином, Х400*- основное вещество1.Коллагеновые волокна

3.Фибробласты

Рыхлая соединительная тканьОкраска железным гематоксилином, Х400*- основное вещество1.Коллагеновые волокна2.Эластические волокна

5.Тканевые лимфоциты

Сухожилие (продольный срез)Окраска гематоксилином и эозином, Х1001.Пучки первого порядка2.Ядра фиброцитов3.Пучки второго порядка

4.Эндотеноний

Эластическая связка (продольный срез)Окрашено пикриновой кислотой, фуксином и гематоксилином, Х 1001.Эластические волокна2.Коллагеновые фибриллы

3.Фибробласты

Эластическая связка (продольный срез)Окрашено пикриновой кислотой, фуксином и гематоксилином, Х401.Эластические волокна2.Коллагеновые фибриллы

3.Фибробласты

Ретикулярная ткань лимфатического узлаОкраска гематоксилином и эозином, Х 100*- Ретикулярные клетки1.Цитоплазма и отростки2.Ядра клеток

3.Лимфоциты

Жировая тканьОкрашено специальным методом для выявления жира: суданом и гематоксилином, Х1001.Липоциты

2.Жировая капля

Гиалиновый хрящОкраска гематоксилином и эозином, Х1001.Надхрящница2.Межклеточное вещество3.Молодые хондроциты

4.Зрелые хондроциты

Эластический хрящПрименен специальный метод окраски на эластин: орсеином и гематоксином, Х1001.Надхрящница2.Межклеточное вещество3.Эластические волокна

4.Изогенные группы хондроцитов

Волокнистый хрящОкраска гематоксилином и эозином, Х1001.Пучки коллагеновых волокон2.Основное вещество

3.Хондроциты

Поперечный срез трубчатой костиОкрашено по методу Шморля тионином и пикриновой кислотой, Х401.Периост2.Наружные генеральные пластинки5.Каналы остеонов

6.Пластины остеонов

Поперечный срез трубчатой костиОкрашено по методу Шморля тионином и пикриновой кислотой, Х1002.Наружные генеральные пластинки5.Каналы остеонов

6.Пластины остеонов

Поперечный срез трубчатой костиОкрашено по методу Шморля тионином и пикриновой кислотой, Х400

4.Внутренние генеральные пластинки

Поперечный срез трубчатой костиОкрашено по методу Шморля тионином и пикриновой кислотой, Х401.Периост5.Каналы остеонов6.Пластины остеонов

7.Вставочные пластинки

Источник: https://histologyknmu.wixsite.com/info/gistologicheskie-preparaty

Цель лабораторной работы № 2: Научиться различать на мазках крови человека форменные элементы. Оборудование и материалы: лабораторный микроскоп, гистологические препараты: Мазок крови взрослого человека Мазок крови лягушки Мазок красного костного мозга Лабораторная работа рассчитана на 2 аудиторных часа.

Ход работы:

1. Рассмотреть препарат 1. Мазок крови человека (рис. 2.4, 2.5). Окрашивание азуром П и эозином. При малом увеличении обратить внимание на различную окраску эритроцитов и лейкоцитов. Эритроциты – самые многочисленные клетки крови и на мазке они составляют большинство. При большом увеличении микроскопа найти эритроциты (рис. 2.4), окрашенные эозином в розовый цвет. Обратите внимание, у эритроцитов более интенсивно окрашена периферическая часть, а центральная область бледная. Связано это с тем, что эритроцит имеет форму двояковогнутого диска. Найти в поле зрения нейтрофильный сегментоядерный лейкоцит (рис. 2.4). Цитоплазма нейтрофила имеет бледно сиреневую или голубую окраску, зернистая, содержит темные азурофильные гранулы, которые представляют собой первичные лизосомы. Ядро дольчатое (от 3 до 5 сегментов, соединенных тонкими «мостиками»), окрашено в фиолетовый цвет. Найти на мазке эозинофильный лейкоцит (рис. 2.4). Ядро клетки обычно двудольчатое, а цитоплазма заполнена большими эозинофильными (темно-розовыми) специфическими гранулами одинакового размера. Базофильные гранулоциты встречаются редко. Для них характерна крупная зернистость фиолетового цвета (рис. 2.4). Ядро базофила обычно почковидное, двудольчатое, часто его не заметно из-за обилия гранул и слабого окрашивания. Найти в поле зрения лимфоцит и моноцит. Лимфоциты имеют округлое плотное ядро с узким ободком цитоплазмы (рис. 2.5). Моноциты легче найти на периферии мазка. Это крупные клетки с обширной цитоплазмой голубого цвета (рис. 2.6). Форма ядра подковообразная или двудольковая, окрашивается слабее, чем у лимфоцитов, поэтому в нем хорошо заметны ядрышки. Кровяные пластинки небольшого размера (в 3 раза меньше эритроцитов), расположены небольшими группами между клетками и имеют слабо-фиолетовую окраску.

2. Зарисовать и обозначить: 1) эритроциты; 2) нейтрофильный сегментоядерный лейкоцит; 3) эозинофильный лейкоцит; 4) базофильный лейкоцит; 5) лимфоцит; 6) моноцит. Выделить в гранулоцитах ядро, цитоплазму, гранулы. В агранулоцитах обозначить ядро, цитоплазму.

3. Рассмотреть препарат 2. Мазок крови лягушки (рис. 2.7). Окрашивание азуром П и эозином. В поле зрения видны ядерные эритроциты, характерные для всех классов позвоночных, исключая млекопитающих.

Вместо кровяных пластинок в мазке крови лягушки видны тромбоциты – мелкие клетки, располагающиеся небольшими группами между другими клетками крови. Эритроциты имеют овальную форму. Цитоплазма их розового цвета.

В центре клетки располагается овальное ядро темно-синего цвета. Нейтрофилы мельче эритроцитов, гранулы в их цитоплазме палочковидной формы. Ядра сегментированные. Лимфоциты и моноциты существенных особенностей не имеют.

4.

Зарисовать и обозначить: 1) эритроциты (выделить в них ядро, цитоплазму, плазмолемму); 2) нейтрофилы; 3) эозинофилы; 4) тромбоциты; 5) лимфоциты; 6) моноциты.

5. Рассмотреть препарат 3. Мазок красного костного мозга. Окраска по методу Романовского-Гимзы. Мазок красного костного мозга (рис. 2.8. – 2.12) позволяет изучать в световом микроскопе различные стадии и виды гемопоэза, поскольку клетки после обработки антикоагулянтами и окраски располагаются не группами, а поодиночке и хорошо различимы.

6.

Зарисовать и обозначить: 1) эритробласты (базофильные, полихроматофильные, оксифильные); 2) ретикулоциты; 3) эритроциты; 4) промиелоциты; 5) метамиелоциты; 6) палочкоядерные; 7) сегментоядерные гранулоциты (базофильные, нейтрофильные и эозинофильные); 8) промоноциты; 9) моноциты; 10) промегакариоциты; 11) мегакариоциты; 12) лимфоциты (большие, средние, малые).

Контрольные вопросы и задания для самостоятельной работы
1. Охарактеризуйте кровь как ткань. 2. Состав и функции крови. 3. Дайте морфофункциональную характеристику эритроцитов и кровяных пластинок. 4. Лейкоциты – особенности классификации. 5.

Дайте морфофункциональную характеристику гранулярным и агранулярным лейкоцитам. 6. Что обозначает понятие «лейкоцитарная формула»? 7. Из каких компонентов состоит лимфа? 8. Чем отличается эмбриональный гемоцитопоэз от постэмбрионального? 9. Объяснить эмбриональное кроветворение. 10.

Охарактеризовать основные этапы постэмбрионального кроветворения. 11. Что такое стволовые, полустволовые и унипотентные клетки? 12. Объяснить этапы формирования эритроцита. 13. В чем заключаются основные процессы дифференцировки клеток гранулоцитарного ряда? 14.

В каких органах и как происходит формирование Т- и В-лимфоцитов? 15. Где формируются моноциты? Какие стадии они проходят? 16. Как происходит образование тромбоцитов?

Источник: http://koi.tspu.ru/koi_books/kayumova/lb2hod.htm

БолиНет
Добавить комментарий